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Summary 
This report presents a generalized approach and interim criteria for computing the average 

of the 1/nth highest accelerations when analyzing accelerometer data recorded during trials of 
manned and unmanned small boats and craft.  The computational approach and the interim 
criteria are based on analysis practices that have evolved over a number of years at the 
Combatant Craft Division of Naval Surface Warfare Center, Carderock Division as a set of best-
practices for achieving repeatability when computations are performed by different data analysts.  
The historical background of the computational approach is summarized, the fundamental 
physics of craft wave encounters and wave slam events are discussed, and interim criteria for the 
generalized computational approach is presented.  Typical data recorded during full scale trials 
of a high-speed planing craft is presented to illustrate results of the generalized computational 
approach. 

 

Introduction 

Background 
The Combatant Craft Division (CCD) of Naval Sea Systems Command (NAVSEA), Naval 

Surface Warfare Center Carderock Division conducts at-sea performance trials of manned and 
unmanned new-technology prototype and new acquisition craft for numerous government 
agencies and private industry.  During these trials accelerometers are typically installed to 
capture the dynamic motions of the craft in waves.  These motions are of interest because they 
are applied in craft design and comparative craft evaluations to address multiple factors 
associated with seaworthiness, including hull design loads, stability, component ruggedness, and 
crew or passenger comfort and safety. 

Historical Perspective 
 Twenty years ago high-speed craft motions data was collected using servo and piezo-
resistive accelerometers and analog magnetic tape recorders with relatively low frequency 
bandwidths (dc to a few hundred Hz).  Signal conditioning was relatively straightforward and 
there were no concerns about aliasing frequencies in the data.  Post-trial data analysis was time 
intensive and limited by memory cost and computer availability 

 Modern digital data acquisition and measurement systems are self-contained, relatively 
inexpensive, and available from a number of vendors.  Most equipment has a minimum of 16-bit 
A/D conversion with signal resolution of 65,536 parts (98dB signal/noise), and accelerometer 
resolution of up to 0.003 g is possible for a ± 100 g range.  Analog sensors are still used, but they 
have become smaller, lighter, and more robust.  They are also less expensive and have higher 
frequency bandwidths.  Personal computers are now relatively inexpensive with large memory 
capability at very high processing speeds, and commercially available software can be 
programmed to perform a variety of analysis techniques. 

1 
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Data Acquisition Guidelines 
Successful data acquisition begins with requirements definition.  Key requirements must be 

defined, including the trials objectives, key parameters of the investigation, anticipated 
parametric variation, the required data resolution, and the post-trial data analysis methodologies 
to be applied.  Historically the acceleration response of the craft has been a key parameter for 
most design applications and seakeeping evaluations. 

Accelerometers are typically installed at three locations near the bow, the stern, and at the 
craft’s longitudinal center of gravity (LCG) to measure rigid body motions.  Primary installations 
are oriented in the vertical direction to capture heave and pitch responses, with additional 
accelerometers oriented longitudinally (fore-aft) and transverse (athwartship) depending upon 
the requirements of the investigation.  For most applications the primary interest is for data 
within the dc to 100 Hz frequency band.  Standard practice is therefore to provide an analog pre-
filter at 100 Hz with data sampled at 512 samples per second.  

Peak Acceleration Data  
One aspect of data analysis methodology that has been adopted for high-speed planing craft 

involves the assessment of peak vertical acceleration values encountered during individual wave 
slam events [1], [2], [3].  Peak acceleration amplitudes recorded during a test sequence are 
tabulated, and averages are calculated using a peak-to-trough methodology adopted from ocean 
wave measurement techniques [4].  In addition to the overall RMS acceleration, three statistics 
have been reported in numerous test and evaluation reports for both model-scale and full-scale 
tests to quantify the acceleration response of the craft.  These are referred to as the average of the 
one-third, one-tenth, and one- hundredth highest accelerations.  Although the algorithm for 
calculating these statistics is not consistently defined or implemented, it is conceptually simple to 
understand.  Peak accelerations are extracted from the acceleration time history by a peak-to-
trough algorithm with a subjectively defined threshold, above which data are considered to be 
important for design or comparative study.  The statistics are calculated by ordering extracted 
peak accelerations from highest to lowest, selecting the highest one-third, one-tenth, or one-
hundredth peak values, and calculating the average.  For example, the average of the one-tenth 
highest accelerations (typically used in craft design) can be represented by equation (1), 

 

ܣ                                             భ
భబ
ൌ ଵ

భ
భబே

∑ ௜ܣ
భ
భబே
௜ୀଵ                                       Equation (1) 

 

where Ai are the individual acceleration peaks (extracted from an acceleration time history) 
sorted in such a way that the largest amplitude acceleration has i =1 and the lowest acceleration 
is i =N/10.  The average of the one-third and one-hundredth highest acceleration values can be 
determined similarly. 

Three different methods have been evaluated at Combatant Craft Division to calculate 
these statistics.  All three methods employ a peak-to-trough analysis, as described by Zselecsky 
and McKee [2], to identify acceleration time history maxima and minima, but each method 
employs different threshold criteria for identifying and extracting peaks from a record.  

2 
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The first method applies a user-defined vertical threshold value.  It recognizes as a peak 
any maximum (whether above or below the zero level), that exceeds the preceding and following 
minima by the value of the vertical threshold (or buffer value).  The number of peaks identified 
depends on the threshold value chosen, and thus returns subjective and often non-intuitive 
results.   

A second method is referred to as the vertical difference or zero crossing method.  It 
identifies peak accelerations based on maxima (peaks) that exceed the user-selected threshold 
above the zero value, and minima (troughs) that exceed the user-selected threshold below the 
zero value.  Like the vertical threshold method described above, the results of this analysis 
method often yield non-intuitive outcomes.   

In an effort to reduce the subjectivity of acceleration time-history analysis, a third method 
was developed which relies on a horizontal duration (in seconds) criteria typically related to the 
wave encounter period.  Evaluation of many sets of time-history acceleration data resulted in the 
observation that craft encounters with waves (wave impacts) exhibit a relatively constant 
periodicity for a given craft speed.  If, instead of relying on an amplitude threshold as the peak 
discriminator, a time duration discriminator were used, the calculation of impact accelerations 
became more predictable and intuitive.   

Figure 1 illustrates the average of the 1/3rd, 1/10th, and 1/100th highest peak acceleration 
values calculated using the horizontal duration method.  In this example the method was applied 
to the acceleration time history shown in Figure 2.  The curves illustrate that an infinite number 
of answers exist for each of the average acceleration parameters depending upon the choice of 
the horizontal threshold value.  A final value requires the analyst to choose a subjective threshold 
value.  

While the three calculation methods are simple and straight forward, their application is 
problematic due to the subjectivity of individual analyst choices.  Different analysts will choose 
one of the three peak-to-trough methods while selecting from an infinite range of threshold 
criteria, and invariably will produce different estimates of average 1/3rd, 1/10th, and 1/100th peak 
accelerations.  The purpose of this report is to present rationale and criteria for a generalized 
approach that obviates the subjectivity when analyzing either full scale or model scale 
acceleration data to achieve similar results among multiple analysts. 

The vertical acceleration record shown in Figure 2 is presented as a typical example 
throughout this report.  It was recorded at the longitudinal center of gravity (LCG) during trials 
of a 36-foot craft traveling at an average speed of 28 knots in a significant wave height of 4.4 
feet.  The average wave period was 3.7 seconds.  A 240-second time period was selected to 
illustrate examples in this report.  

 

3 
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Figure 1.  Horizontal Threshold Method Peak Acceleration Values 
 

 

 

 

Figure 2.  Vertical Acceleration at the LCG of a 36-Foot Craft 
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Craft Wave Encounters 

Effect of Craft Speed 
Figure 3 shows four different wave encounters for four different craft moving at different 

speeds in different sea states.  The speed-length ratio Vk/L1/2 is a convenient parameter used in 
numerous historical documents because of its relationship to ocean wave celerity, and the well 
known planing craft speed regimes related to values of 2, 4, and 6.  

 

Figure 3.  Slow-Speed and High-Speed Wave Encounters 
 

A speed ratio of two and below represents the pre-hump condition where buoyancy forces 
dominate.  A ratio greater than 4 is the post-hump regime where the craft is beginning to plane, 
and both dynamic and buoyant forces participate.  For a ratio of 6, hydrodynamic forces 
dominate over buoyancy [1]. 

In the upper left curve in Figure 3 the very low value of 0.13 is approximately equivalent to 
“underway but not making way.”   The smooth curve is characteristic of the craft bobbing up and 

5 
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down due to gravity and buoyant forces with each passing wave.  The figure illustrates that the 
peak acceleration due to a wave encounter may be the maximum value of a smooth sinusoidal 
shape, or it may be the maximum value of a response shape characterized by a much more rapid 
almost linear increase from a low amplitude to the peak value.  In each plot the time scales and 
amplitude scales vary as a function of sea state and craft speed. 

As speed increases, the upward and downward forces due to buoyancy and gravity are still 
observed in the time histories, but the shapes of the responses become less smooth.  Dynamic 
effects of higher speed wave impacts are observed as acceleration spikes followed by smooth 
transitions to the next impact spike.  The shape, amplitude, and duration of the spike can depend 
upon numerous parameters, including significant wave height, impact angles (due to craft trim, 
deadrise, and buttock, for example), wave slope, and craft speed [4].   As speed increases into the 
planing regime the acceleration spikes are more pronounced and wave slams are observed (and 
felt by riders) as violent impacts between the craft and the incident wave.  The wave slam for the 
4.66 speed ratio shown on the lower right curve in Figure 3 is from the 240 second acceleration 
record shown in Figure 2.  The large acceleration spike due to a wave slam is clearly visible, and 
after the impact the forces due to up and down wave interactions are observed in a smooth phase 
were hydrodynamic lift forces, thrust, drag, and gravity are participating.  

Using Savitsky’s empirical equation that computes the average of many peak accelerations 
as a function of craft design dimensions, craft speed, and the significant wave height, the 
following approximate relationship illustrates how craft speed and significant wave height can be 
used to scale from speed and height for test condition “a” to test condition “b”.   

஺೎೒್
஺೎೒ೌ

ൎ constant ቆ
ுభ

య್ൗ

ுభ యೌൗ
ቇ ቂ௏್

మ

௏ೌమ
ቃ    Equation (2) 

 

 

Where: Acg is the average peak vertical acceleration at the CG 

  H1/3 is the average of the 1/3rd highest wave heights 

  V is the craft speed 

 

Equation (2) indicates that the ratio of the acceleration responses is approximately in 
proportion to the ratios of the craft potential and kinetic energies associated with conditions a 
and b.  

Sequence of Events  
Figure 4 illustrates the sequence of events in a typical wave slam event for speed-length 

ratios in the planing regime.  The top curve is one of the individual unfiltered acceleration time 
histories extracted from the vertical acceleration time history shown in Figure 2 for a wave slam  
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Figure 4.  Wave Encounter Sequence of Events 
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event roughly 66 seconds from time zero.  The middle curve is the velocity time history obtained 
by integrating the acceleration curve, and the bottom curve is the integral of the velocity to show 
the absolute vertical displacement of the craft.  These curves characterize the vertical rigid body 
motion of the craft which includes contributions from both heave and pitch responses. 

At time A the minus 0.9 g vertical acceleration indicates a condition very close to a gravity 
free fall phase.  The relatively constant minus 0.9 g from time A to time B and the linear 
decrease in velocity suggests that the craft is rotating downward with the stern in the water.  The 
drop in height from time A to B is then a combination of heave and pitch motions.  

At time B the craft impacts the incident wave, the velocity reaches a minima and changes 
rapidly to an increasing value, and the force of the impact is seen as an almost instantaneous 
jump to a maximum acceleration (the beginning of the acceleration spike).  In this example the 
peak acceleration is achieved on the order of 0.1 seconds after initial wave impact. 

From time B to time C the craft continues to move down in the water, the velocity 
approaches zero, and the acceleration decreases rapidly toward a value of approximately 1.0 g. 
The decreasing acceleration is characteristic of an impact event whose initial large peak force is 
decreasing to an ambient value.  

At time C the downward motion of the craft reaches a maxima, and the instantaneous 
velocity is zero, but forces due to buoyancy, hydrodynamic lift, and components of thrust and 
drag combine to produce a net positive force upward.  The impact event is complete at time C 
and the craft motion is now dominated by wave interaction forces. 

From time C to D the combined forces of buoyancy and hydrodynamic effects continue to 
push the craft upward, but the net force (and the acceleration) approaches zero.  The hull is still 
in the water, but gravity is rapidly overcoming upward lift forces. 

At time D gravity becomes equal to the other forces, the instantaneous acceleration is zero, 
and a velocity maxima is achieved.  

Between time D and E the hull below the LCG rises vertically with the velocity 
approaching another maxima.  Gravity once again dominates the other dynamic forces and at 
time E another peak vertical displacement is achieved, the instantaneous velocity is zero, and 
another wave impact sequence of events begins. 

The duration of the wave slam event from time B to C is roughly 0.16 seconds.  From time 
C to D (approximately 0.45 seconds) buoyancy and hydrodynamic lift forces dominate gravity to 
yield an upward force (acceleration).  From time D until the next wave encounter gravity 
dominates the other forces as the hull moves above its static and planing draft line.  

Wave Encounter Period 
Appendix A presents the table of wind and sea scales that define fully risen sea state 

conditions with parameters that include significant wave height (H1/3), average wave period (TW), 
and average wave length (LW).  The listed significant wave heights are the average of the 1/3rd 
highest observed during a specified period of time.  The relationship between tabulated values of 
significant wave height in feet and the average wave period in seconds is shown in Figure 5. 

8 
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Equation (3) predicts this trend within ± 2.5 percent and a 0.996 correlation coefficient for 
significant wave heights of 0.5 to 6.3 feet.  

 

  ௐܶ ൌ െሺ0.0133ܪଵ ଷ⁄ ሻସ ൅ ሺ0.1967ܪଵ ଷ⁄ ሻଷ െ ሺ1.0553ܪଵ ଷ⁄ ሻଶ ൅ ൫2.8982ܪଵ ଷ⁄ ൯ ൅ 0.4269 

 

          Equation (3) 

 

 

y = -0.0133x 4 + 0.1967x3 - 1.0553x 2 + 2.8982x + 0.4269
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Figure 5.  Average Wave Period Versus Significant Wave Height 
 

If it is assumed that a craft is moving in head seas at a constant speed Vk in knots, it can be 
shown that the average wave encounter period (T) in seconds for water depths greater than 0.5 
LW  is : 

 

    ܶ ൌ ହ.ଵଶ ೈ்
మ

ଵ.଺଼଺௏ೖାହ.ଵଶ்ೈ
   Equation (4) 

 

When equation (3) is substituted into equation (4) it can be shown that the wave encounter 
period (T) is great than 0.5 seconds for speeds up to 50 knots and significant wave heights 
greater than 1.0 foot.  The wave encounter frequency shown in Figure 6 is the reciprocal of 
equation (4).  The curves for 10 to 50 knot speeds indicate that the wave encounter frequency 
will be less than 2 waves per second for significant wave heights greater than 1.6 feet. 
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Figure 6.  Wave Encounter Frequency Versus Speed 
 

This is important because it means that the rigid body response of a craft moving at planing 
speeds in sea states greater than 1.6 feet will manifest itself as repeated acceleration pulses 
whose cyclic frequency is on the order of 2 Hertz or less.  Any frequency content in the 
acceleration record greater than 2 Hertz is therefore coming from a source other than longitudinal 
(surge) rigid body encounters with waves.  As shown in Figure 7 and Figure 8, the most 
prevalent source for other frequency content in small boats and craft recorded at bow, LCG, and 
stern accelerometer locations is from local oscillations of contiguous structure in the vicinity of 
the gage.  Local flexure of deck plating or panels induced by wave slams or machinery 
vibrations, or even rotational motions of equipment installations are examples of likely high 
frequency responses observed riding on top of craft rigid body motions.  Figure 8 presents the 
Fourier spectrum of the acceleration record shown in Figure 2 that highlights the presence of 
high frequency motions above the wave encounter frequency. 
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Figure 7.  Local and Global Craft Motions 
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Figure 8.  Fourier Spectrum of Typical Vertical Acceleration Record 
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Rigid Body Motion  
Figure 9 shows a 4-second segment extracted from the typical acceleration record of Figure 

2.  The red curve is the original unfiltered record.  It contains high frequency oscillations on the 
order of 25 to 26 Hz, most likely due to deck vibrations close to the gage.  These oscillations add 
significant amplitude to the acceleration response at the time of the wave slam peak acceleration 
response.  Gage placement should focus on stiffened locations to minimize structural flexure.  

For many applications of interest, including structural design, seakeeping comparisons, or 
impact events on crew or equipment, the rigid body acceleration is the parameter most often 
related to global loading conditions.  It is therefore necessary to take extra steps to estimate the 
rigid body response by removing the local high frequency responses. 

Data Filtering  
There are two simple approaches to removing high frequency responses: low-pass signal 

filtering and curve fitting.  The black curve in Figure 9 illustrates an estimate of the rigid body 
acceleration by use of a 10 Hz low-pass filter.  The peak acceleration for the filtered wave slam 
event is 3.5 g.   The same unfiltered wave slam has a peak of 5.29 g. 

 

 

Estimated rigid body accelerationEstimated rigid body acceleration

Figure 9.  Unfiltered and Filtered Acceleration Responses 
 

Low-pass signal filtering after inspection of frequency spectra has evolved as the process of 
choice, and inspection of many records for different small craft at different speeds has shown 
that a 10 Hz low-pass filter removes sufficient high frequency oscillation without excessive 
removal of peak rigid body response content.  Figure 10 presents three Fourier spectra for 
vertical accelerations at the LCG recorded on three different craft at varying speeds.  In each 
case they confirm that the largest spectral amplitudes correspond to frequencies below 10 Hz.  
This is an indication that the rigid body wave encounters are below the 2 Hz threshold, and that 
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flexural responses will not dominate recorded peak accelerations after applying a 10 Hz low-pass 
filter.  

Care must be exercised during the frequency analysis for craft with larger length-to-beam 
ratios to ensure that flexure of the hull girder (hog/sag) is understood.  The nominal 10 Hz value 
may have to be adjusted if global flexural responses are part of the data.  

The filter used for this effort was a Bessel two-pole filter with a characteristic 12 dB per 
octave attenuation (6 dB per octave per pole).  The higher the filter order, the steeper the 
attenuation characteristic, and the more likely that unwanted frequencies will be attenuated.  At 
the same time, as filter order increases, so does phase (or time) delay, although this delay has no 
effect on the statistical analysis.  See Appendix B for additional information.  Different filter 
types have different characteristics for amplitude and phase response.  While there are many 
kinds of filters (Butterworth, Bessel, and Kaiser Window, for example), those designed for 
amplitude accuracy provide results that are within a few percent of one another.   

Wave Slam Pulse Shapes  
A wave slam is a violent impact between the hull and an incident wave.  Figure 11 presents 

eight wave slams from Figure 2 with expanded time scales to show just the impact period and the 
plateau.  Each was normalized by dividing by the peak value so that the maximum is 1g.  The 
left plot shows five impact events whose original peak values were from 3.1g to 3.8g.  Three 
more slams whose original peaks were 1.9 g, 4.5g, and 5.3g are compared in the plot on the right. 
The fourth red curve on the right is the average of the five curves on the left.  In general the 
impact pulse shapes (from B to C in Figure 4) rise from zero to a maximum in 50 to 80 ms, and 
have a total duration on the order of 200 ms or less.  

The good correlation illustrates the repeatability of the different wave slam events and 
suggests that, while the energies associated with each incident wave may be random, the 
response of the craft to individual slams may be repeatable with amplitudes being a function of 
initial conditions just prior to each slam event. 
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Figure 10.  Frequency Spectra for Varying Conditions 
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Slam Slam 14, 66, 75, 129, 179

Slams 4, 196,  221

Slams 14, 66, 75, 129, 179

Figure 11.  Normalized Pulse Shapes for Wave Slams 
 

RMS Acceleration  
The root mean square (RMS) is a measure of the average fluctuation about the mean for a 

time varying signal.  RMS is often referred to as the effective value.  For time varying signals 
with an average value of zero (acceleration data should be processed in such a way that the 
average value is zero), the RMS value is equivalent to the standard deviation, and is calculated as 
presented in reference [6] using the relationship 

 

                                       m

m

1i A
2
i

RMS
∑
==                                                      Equation (5) 

                                                                                          

where Ai are the data points and m is the total number of discrete points within the data record. 
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The RMS value of the acceleration time history shown in Figure 2 is 0.62 g.  This 
amplitude is much less than the thirty wave slams with peak accelerations in the 2.0 to 5.3 g 
range, but it is characteristic of the response amplitudes, both positive and negative, just before 
and just after wave slams.  This is illustrated in Figure 12 and Figure 13.  

 

 

RMS = 0.62 g66.4=
L

Vk
RMS = 0.62 gRMS = 0.62 g66.4=

L
Vk

Figure 12.  Absolute Values in a 30-second Acceleration Record 
 

Figure 12 shows a 30-second segment of the Figure 2 acceleration record where all the 
negative values have been made positive.  Individual wave slam events are seen as acceleration 
spikes.  The hydrodynamic phases of response just after the slam events, as well as those phases 
dominated by gravity just before slam events typically have absolute magnitudes that vary from 
zero to 1.5 g, with many of these lower amplitude response phases in the 0.4 g to 0.9 g range. 
This is illustrated further in the 5-second segment shown in Figure 13.  The wave interaction 
shapes have many positive and negative plateaus that dominate the statistical computation of the 
RMS value.  
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Figure 13.  RMS Acceleration Correlation with Low-amplitude Responses 
 

Figure 12 and Figure 13 demonstrate that for high-speed craft operating in the planing 
regime, the RMS value correlates well with the lower amplitude values associated with 
buoyancy, hydrodynamic lift and drag, and gravity forces, and therefore serves as a rational 
baseline for counting higher peak accelerations caused by wave impacts.  Wave slam events for 
planing craft typically dominate the loading regime of interest; therefore, determination of peak 
acceleration values for high-speed craft should focus on amplitudes greater than the RMS 
baseline value.  

 

Generalized Computational Approach 
The following four-step generalized approach is recommended for calculating the average 

of the 1/nth highest peak accelerations for a given acceleration time history recorded in any 
orientation axis. 

Frequency Analysis 
The first step in the data analysis process is the computation of a frequency spectrum in the 

0.1 to 100 Hz range and plotting of the results as illustrated in Figure 10.  If the largest spectral 
amplitudes are less than 2 Hz then the data can be low-pass filtered to remove flexural 
components.  If the largest spectral amplitudes exist in the 2 to 15 Hz range, other techniques 
such as multivariate data reduction (using three or more acceleration gages) may be necessary to 
extract rigid body peak acceleration estimates. 

10 Hz Low-Pass Data Filter  
As a starting point for data analysis, application of a 10 Hz low-pass filter to the 

acceleration record to estimate rigid body acceleration motions is recommended.  Experience has 
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demonstrated that in some specific cases a filter frequency of 8 Hz or sometimes 12 to 15 Hz 
may be sufficient to extract rigid body estimates.  The nominal 10 Hz value is recommended to 
establish a generalized value greater than the 2 Hz threshold, which still allows rigid body 
rotational components that may exist in the 2 to 4 Hz range. 

RMS Calculation  
The RMS value for the 10 Hz filtered acceleration record should then be calculated.  Its 

value establishes a rational baseline for analyzing and counting higher acceleration peaks 
induced by wave impacts.  

Calculation of the A1/n Values 
A peak-to-trough algorithm with the following interim criteria to select peak amplitudes 

from the acceleration time history is then applied.  The vertical threshold should be equal to the 
RMS acceleration for the time history, and the horizontal threshold should be equal to one-half 
the data sampling rate (i.e., 0.5 seconds). 

Use of the one-half second horizontal threshold provides a lower bound wave encounter 
period that ensures all rigid body peaks will be counted.  It was demonstrated previously that 
average wave encounter periods will be greater than 0.5 seconds for speeds up to 50 knots and 
significant wave heights greater than 1.6 feet.  

The peak acceleration values are then tabulated from highest to lowest amplitudes and a 
histogram is constructed.  Finally, the average of the highest 1/nth peak values using equation (1) 
is calculated.    

Documentation  
It is recommended that any document used to report computed average of the 1/nth highest 

accelerations should also include the following information:  craft displacement, length, beam, 
draft, deadrise, and LCG; craft heading (e.g. head or following seas), average speed, and speed 
versus time if available; environmental conditions including significant wave height, average 
wave period, and average wave length; instrumentation characteristics such as bandwidth, 
sampling rate, and anti-alias filter rate; and acceleration data, including typical 30-second time 
history with maximum peak acceleration, tabulated or plotted peak acceleration values (greater 
than the RMS value, presented largest to smallest), number of peaks, peak acceleration histogram 
plot (each bin = 1 RMS), tabulated acceleration values, including A PEAK, A1/100, A1/10, and RMS. 
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Example Calculations 
After the typical acceleration record shown in Figure 2 was subjected to a 10 Hz low-pass 

filter, one-hundred fifty-one peak accelerations were counted greater than the 0.62 g RMS value. 
Figure 14 shows a 30-second segment illustrating the wave slam peaks counted (triangles) and 
the peaks ignored (circles) by the computational procedure.  Thirty of the peaks were greater 
than 2.0 g, and the largest peak was 5.3 g.  Figure 15 shows all one-hundred fifty-one peak 
acceleration values sorted and plotted from largest to smallest.  The distribution of all peak 
values is shown in the Figure 16 histogram.  

Figure 17 compares filtered and unfiltered peak acceleration levels for seven of the high-
amplitude wave slams observed in the Figure 2 record.  The slam number is the approximate 
time (in seconds) when the slam occurred in the acceleration record.  Computed averages of the 
one-third, one-tenth, and one- hundredth highest accelerations for filtered and unfiltered data are 
also presented to illustrate their magnitudes relative to the seven high-amplitude wave slam peak 
accelerations.  As N becomes large, the average of the 1/nth highest accelerations approaches the 
maximum value in the data set. 

Figure 18 compares the computed average of the 1/10th highest accelerations for the filtered 
and unfiltered acceleration record.  The average of the 1/10th highest acceleration equal to 
approximately 3.2 g (shown as the circled data point) is the value all analysts would compute 
using the one-half second horizontal threshold and RMS vertical threshold values. 

 

 

Figure 14.  Peaks Counted Using Standard Criteria 
 

19 



NSWCCD-23-TM-2010/13 

 

 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 20 40 60 80 100 120 140 160

Peak Number

Pe
ak

 A
cc

el
er

at
io

n 
(g

)

Figure 15.  Sorted Peak Accelerations Greater than RMS Value 
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Conclusions 
As craft speed increases into the planing regime, individual wave encounters can result in 

violent impacts between the hull and the wave.  The wave slams are typically short duration 
events, on the order of two-tenths of a second or less, whose initial rigid body peak acceleration 
rapidly decreases to ambient values. 

The rigid body response of a craft moving at planing speeds in sea states greater than 1.6 
feet will manifest itself as repeated acceleration pulses whose cyclic frequency is on the order of 
2 Hz or less.  Any frequency content in the acceleration record greater than 2 Hz is therefore 
coming from a source other than longitudinal (surge) rigid body encounters with waves. 

In addition to rigid body motions of a craft, recorded acceleration data invariably includes 
small amplitude, high frequency, structural oscillations in the vicinity of the gage induced by 
wave slams.  Gage placement should focus on stiffened locations to minimize recording 
structural flexure.  The recommended 10 Hz low-pass filter attenuates local oscillations to better 
estimate rigid body acceleration. 

For craft operating in the planing regime, the RMS value correlates well with the lower 
amplitude values associated with positive and negative hydrodynamic forces (i.e., ambient wave 
interaction and gravity).  The recommended vertical threshold equal to the RMS value for an 
acceleration record establishes a rational baseline for counting higher rigid body peak 
accelerations caused by wave impacts. 

Craft operating at planing speeds up to 50 knots in head seas greater than 1.6 feet will 
encounter waves on the order of every 0.5 seconds or more.  The recommended 0.5 second 
horizontal threshold establishes the lower bound for counting peak acceleration values. 

A four-step process is recommended for a generalized computational approach for 
computing the average of the 1/nth highest acceleration when analyzing accelerometer data 
recorded during trials of manned or unmanned small boats and craft.  Use of three interim 
criteria, including low-pass filtering at 10 Hz, a peak-to-trough vertical threshold equal to the 
acceleration record RMS value, and a peak-to-trough horizontal threshold equal to 0.5 seconds 
significantly reduces subjectivity in the calculation.  The methodology is based on analysis 
practices that have evolved at the Combatant Craft Division of Naval Surface Warfare Center, 
Carderock Division as a set of best-practices for achieving repeatability when calculations are 
performed for different data sets and by different researchers for varying projects.  
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Symbols, Abbreviations, and Acronyms 
 

A .......................................................................................................... peak vertical acceleration (g) 

Acg .................................................................................. average vertical acceleration (g) at the CG 

A/D .......................................................................................................................... analog-to-digital 

dB ........................................................................................................................................... decibel 

ft ...................................................................................................................................................feet 

g............................................................................................. acceleration due to gravity (32.2 ft/s2) 

H1/3 ...................................... average of the 1/3rd highest wave heights, significant wave height (ft) 

Hz .............................................................................................................. Hertz (cycles per second) 

L ................................................................................................................................ craft length (ft) 

LW ................................................................................................. average length of ocean wave (ft) 

LCG..................................................................................................... longitudinal center of gravity 

ms .................................................................................................................................... millisecond 

N .......................................................................................... number of peak values in a data record 

RMS ....................................................................................................................... root mean square 

s .............................................................................................................................................. second 

T ................................................................................................. average wave encounter period (s) 

TW ................................................................................................................ average wave period (s) 

V ................................................................................................................. average craft speed (ft/s) 

Vk ........................................................................................................... average craft speed (knots)
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Appendix A - Wind and Sea Scales for Fully Risen Seas 
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Appendix B - Data Filtering 
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Figure B1.  Filtering Effects on Slam Event 75 
 

When used in a systematic analysis process, data filtering is useful for extracting needed 
information from an original data record.  When applied indiscriminately the methods often 
result in lost valuable information, leading to incorrect conclusions.   

The high frequency content of the typical acceleration record presented in this report 
contains local flexural oscillations in the vicinity of the sensor with dominant frequency on the 
order of 25 to 26 Hz.  The low frequency components associated with the rigid body motion of 
the craft are below 2 Hz with an average impact frequency of 0.5975 Hz (corresponding to an 
impact period of 1.67 seconds) as determined by frequency analysis. 

Figure B1 presents the original unfiltered slam 75 event and compares the effects of 10 Hz, 
12 Hz, and 15 Hz low-pass filters.  The comparison plot shows that in late time (400 to 600 ms) 
the 10, 12, and 15 Hz filters effectively remove the 25 Hz oscillation.  During the 100 to 400 ms 
period the 12 Hz and 15 Hz filtered records exhibit 25 Hz components that are most likely 
affecting the peak in the filtered plot.  For this slam event, each 5 Hz of additional filter below 15 
Hz reduces the peak acceleration approximately 0.3 g, and shifts the peak to the right on the 
order of 0.2 to 0.4 milliseconds.  The applied filter for this effort was a Bessel two-pole filter 
with a characteristic 12 dB per octave attenuation (6 dB per octave per pole).  The higher the 
filter order, the steeper the attenuation characteristic, and the more likely that unwanted 
frequencies will be attenuated.  At the same time, as filter order increases, so does phase (or 
time) delay, although this delay has no effect on the statistical analysis.
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